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PREDICTION OF THERMAL STRATIFICATION IN A 
CURVED DUCT WITH 3D BODY-FITTED CO-ORDINATES 
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Central Research Institute of Electric Power Industry (CRIEPI). 1646 Abiko, Abiko-shi, Chiba-ken 270-11. Japan 

SUMMARY 
This paper concerns a numerical prediction method for buoyancy-influenced flows using three-dimensional 
non-orthogonal curvilinear co-ordinates. The numerical analysis of the transformed governing equations 
for thermal hydraulics is based on a Lagrangian method, in which advected physical values are evaluated 
by local cubic spline interpolations with third-order accuracy in the three-dimensional computational 
domain. In addition, the buoyancy and diffusion terms are discretized in the Lagrangian scheme so as to 
have second-order accuracy with respect to time and space. The Neumann boundary conditions, which 
have been rather difficult for non-orthogonal co-ordinates to deal with, can be implemented by making 
use of normal vectors on the physical boundary surfaces and cubic spline interpolations. The developed 
numerical method is applied to the steady isothermal flow in a curved pipe and the unsteady stratified 
flow in a curved duct. Both of the predicted values are in good agreement with the experimental results and 
the validity of the prediction method is confirmed. 

KEY WORDS Curvilinear co-ordinate Lagrangian method Spline interpolation Neumann condition 
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1. INTRODUCTION 

It is of great necessity to  predict accurately thermally stratified flows occurring in engineering 
facilities, such as coolant piping systems in a nuclear reactor, since the stratified flows may bring 
about thermal effects on structures which lead to thermal fatigue damage. In many practical 
problems, however, the buoyancy-influenced flows are usually surrounded by complicated- 
shaped boundaries, which makes it difficult to apply numerical methods based on Cartesian 
co-ordinates. 

In order to represent these arbitrarily shaped boundaries, numerical techniques utilizing 
body-fitted curvilinear co-ordinates have been developed up to  the present. Among these 
numerical techniques, one of the most advantageous methods is to obtain the body-fitted 
co-ordinates by solving a system of elliptic partial differential equations in which the co-ordinates 
in physical space are converted to  be dependent variables.' This numerical technique was initially 
applied by Winslow,' Barfield3 Chu4 and Amsden and HirL5 Thompson et a1.6-8 then largely 
developed the elliptic method by extending it to multiply connected regions and by adding 
control functions to the Laplace equations in order to adjust the grid intervals. 

When taking the transformed co-ordinates to be the solutions of the Poisson equation, a 
non-orthogonal curvilinear co-ordinate system is available. The non-orthogonal curvilinear 
co-ordinates utilized in the present study are generated with the aid of cubic spline interpolations 
as done by Hsu and Lee.g As a result, the derived metric coefficients contain truncation errors 
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smaller than those raised by the central difference method employed in previous invest- 
igations.10-'2 In addition, the physical quantity at the intersection of the normal vector on the 
physical boundary surface and the curvature in the vicinity of the boundary is made use of in 
order to deal with Neumann boundary conditions in the present numerical method. 

The accurate numerical analysis of the governing equations for thermal hydraulics is necessary 
especially when the transformed equations are discretized and solved in the computational 
domain. In particular, the discretization of convection terms must be paid attention in order to 
obtain reliable numerical results. While second-order upwind difference and central difference 
were sometimes employed in the past,".' their numerical accuracy or Computational stability 
is not necessarily satisfactory. Similar aspects may also be pointed out with the quadratic 
interpolation method. While Ogawa and Ishiguro' applied a third-order upwind scheme,I4 
there have been few calculations conducted with third-order accuracy in the transformed space. 
In contrast with the usual numerical techniques, the equation of motion and the energy equation 
are discretized in the transformed space with a Lagrangian method in the present study. 
Lagrangian schemes for convection phenomena are capable of providing satisfactory accuracy 
as indicated by Holly and Preissmann' and Schohl and Holly.' These Lagrangian interpola- 
tions were, however, applied to a fairly simple geometry and require a large amount of 
computational time in a three-dimensional domain consisting of many calculation grids. In order 
to achieve highly accurate interpolation within a reasonable computational time, local cubic 
spline interpolation, which provides more reliable results than third-order upwind difference, is 
proposed to evaluate convection terms in the present study. In addition, the discretization of 
the buoyancy and diffusion terms, which has not fully been investigated in Lagrangian schemes, 
is performed so that they can have second-order accuracy with respect to time and space. 

The developed prediction method is applied to the steady isothermal flow in a curved pipe'' 
and the unsteady thermally stratified flow arising in a curved duct. As a result, the predicted 
axial velocity distributions and secondary flow patterns in the pipe agree well with the measured 
results. In addition, the progress of thermal stratification, vertical temperature profiles and other 
experimentally observed aspects are reasonably predicted in the curved duct. 

2. NUMERICAL PROCEDURE 

Generation of body-fitted co-ordinates 

Let (xl, x2, x3) be a Cartesian co-ordinate system defined in the three-dimensional physical 
space. The non-orthogonal curvilinear co-ordinate system (tl, t2, t3) is obtained as the solution 
of the Poisson equation 

where the Einstein summation rule is applied to the terms bearing the same subscripts twice. 
The co-ordinates (tl, tz, t3), fitted to the arbitrarily shaped boundaries in the physical space, 
make up a regular orthogonal co-ordinate system in the computational (or transformed) domain. 
The control functions P,,, in equation (1) are given as exponential forms, which adjust the grid 
intervals as proposed by Thompson et aL7 Equation (1) may be inversely transformed by 
interchanging the dependent and independent variables as 
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where p # q and r = s. Here the derivatives with an asterisk are evaluated not by the usual 
central difference but from cubic spline interpolation. This interpolation is referred to as general 
cubic spline interpolation (GCSI) in the present paper, in which a cubic spline function is 
determined in order that its first and second derivatives should be continuous in a whole 
computational region. In particular, the cross-derivatives in the first term of equation (2) are 
calculated by applying GCSI again to the first derivatives obtained by GCSI. Consequently, 
only the second derivatives in the second term of equation (2) are discretized with the central 
difference and the derived finite difference equations are solved by a successive overrelaxation 
method. Since GCSI allows us to calculate the derivatives with an accuracy higher than the 
central difference, the metric coefficients are finally evaluated with less truncation error compared 
with the usual methods. 

A unit computational volume in the transformed space consists of 27 grids as shown in Figure 
1 and all their locations in the physical space are determined by solving equation (2). The pressure 
and temperature variables are placed at the centre grid in the unit volume, while each 
contravariant velocity component is defined at  the centre grid on the surface normal to its 
direction. In contrast with such a staggered arrangement inside the computational domain, the 
grid arrangements are varied near the boundaries and the physical quantities are defined just 
on the transformed boundary planes so that Dirichlet boundary conditions can be implemented 
exactly. When a certain physical value at a grid point needs to be evaluated at another grid 
located in a different position, it is interpolated with GCSI in the computational domain rather 
than simple linear interpolation. 

Equation of motion 

form in the computational domain: 
The equation of motion with the Boussinesq approximation may be written in the following 

Here D/Dt denotes Lagrange differentiation in the transformed space, given by D/Dt = 
a/dt + U,a/at, ,  where the contravariant velocity component [I, is defined by U ,  = uia5 , laxi .  
The pressure p corresponds to the deviation from that of the hydrostatic condition. The second 
term on the right-hand side of equation (3) represents the effect of buoyancy force, where Ap 
may be approximated by a linear relationship as Ap = -P(T - &). Let the pressure gradient, 
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buoyancy and diffusion terms on the right-hand side of equation (3) be PG,, Bi and Di respectively. 
Then equation (3) can be rewritten in the simple form 

Du, 
~ = - P G ,  + Bi + Di E FUi. 
Dt (4) 

On the basis of Taylor expansion for total differentiation, uAr, tl, t2, t3) can be expressed by 
uAt - At, t1 - A t l ,  t2 - A t , ,  t3 - At3) ,  which is defined at the earlier upstream point. Let the 
superscript n be the computational time step number, where r = nAr + I,, and let the superscript 
'prime' stand for the spatial location at the upstream point P' (tl - A t , ,  t2 - A t , ,  t3 - At3) .  
Now we may derive 

ul t  = u;" + Du;" + fD2u;" + A3. ( 5 )  

Here D denotes total differentiation with respect to time and space. From equation (4) the 
relationship DuY = FU:"At may be derived, and substituting it into equation (9, we have 

u:" = U? + FUTAt + +D(FUY)At + A3. (6) 

In addition, taking Taylor expansion for FUY"-' yields 

Here the superscript 'double prime' stands for the spatial position at 

P" (ti - At1  - A t \ ,  t 2  - At2 - At;, 5 3  - A t 3  - At\)* 

Applying equation (7) to equation (6), we can derive 

u;+l = uY + $FUYAt - +FU;'"-'At + A3. (8) 

The upstream positions of P' and P" may be specified by the following relationships: At, = U",t 
and A t ;  = U;-'Ar.  The pressure gradient term included on the right-hand side of equation (8) 
is dealt with implicitly as 

PGY+' 3PG;" - $PGY"-'. (9) 

Accordingly, equation (8) becomes 

u;+ = u:" - pGl+ 'At  + [$(BY + 0:) - + D;n- l ) ]At .  (10) 

While the above discretization for buoyancy and diffusion terms looks like the Adams-Bash- 
forth method'* in terms of time differencing, it should be noted that the discretization extends 
to two spatial locations P and P as well as two time steps, which results in the second-order 
accuracy of these terms with respect to time and space in Lagrangian schemes. 

Local cubic spline interpolation 

The physical values located at P' and P" are derived with local cubic spline interpolation 
(LCSI) which utilizes the physical values included in a local three-dimensional domain consisting 
of N 3  grid points, in contrast with GCSI using all values in the computational region. LCSI 
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I J) interpolation In ;, direction. 
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Ihl :> dircr~ion: Icl 5 ,  direction 

Figure 2. Local cubic spline interpolation 

can reduce the computational time compared with GCSI, especially when the grid number in 
the computational region becomes large. 

In the case where N = 4 and the location of P' or P" is given by (tip, tzp, t3p), one-dimensional 
cubic spline functions are determined from four physical values lined in the (,-direction as shown 
in Figure 2(a). The 16 derived spline functions provide the 16 interpolated values at (tip, tz, t,). 
Then, as shown in Figure 2(b), four physical values are similarly interpolated at (tip, tZp, t3) by 
cubic spline interpolation four times in the <,-direction. Lastly, the physical value at P or P" 
is determined by interpolation in the (,-direction as indicated in Figure 2(c). In order to obtain 
the one-dimensional cubic spline function used in the above interpolation, the first derivatives 
of the physical values are necessary at both ends of the lined grids. These boundary conditions 
are determined from the polynomial of degree N - 1, which is uniquely derived with N physical 
values. 

Calculation of pressure and velocity 

as suggested by Harlow and Welch," we can obtain the following equation for pressure: 
Differentiating equation (10) with respect to x i  and putting the dilation at step n + 1 to zero 
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Here the terms with an asterisk are evaluated with GCSI, while the metric coefficients included 
in equation ( 1 1 )  have already been determined with GCSI in the generation of curvilinear 
co-ordinates. 

The buoyancy and diffusion terms E i  and Di respectively are first calculated at the grid points, 
where corresponding velocity components are defined, with the following forms: 

Di = ".[( ---) a2ui * (-) at,,, * (-y at,, + lJ,,,(y]. 

a tmat ,  a x j  axj  at,  
Here the temperature and first and second derivatives of velocity with an asterisk are evaluated 
with GCSI, referring to all values in the computational domain. The derived Ei and Di at time 
steps n and n - 1 are then interpolated at P' and P" respectively with the aid of LCSI. Finally, 
their derivatives with respect to t, are calculated by applying GCSI to BY + 0:" and EY"-' + 
Dynp1 and the corresponding terms in equation (11) are obtained. 

The second derivative of pressure in equation ( 1  1)  are discretized with central difference and 
the converged results are obtained from iterative calculations. In the vicinity of boundary 
surfaces, where the intervals of grid positions are changed, the pressure discretization in equation 
( 1 1 )  is also conducted so as to have second-order accuracy by taking Taylor expansion up to 
third-order terms. 

The results of the pressure calculation are substituted into the equation of motion given by 
(lo), where pressure gradients are evaluated with GCSI. While the combination of equations 
(10) and (11) might not be the best way to derive the converged solutions for pressure in terms 
of its efficiency, the present numerical simulations descried later were carried out so that the 
average discrete dilation normalized by flow rate can be kept at less than in the steady 
state, which can be thought as a sufficient level for the fluid continuity. 

The convection term, the first term on the right-hand side of equation (lo), is calculated with 
LCSI in which local 64 physical values are utilized in the interpolation (N = 4). Since the 
buoyancy and diffusion terms in equation (10) have already been obtained in the pressure 
calculation, these values are used again to solve equation (10). 

Energy equation 

The energy equation in the transformed space may be written as 

The discretized equation can be derived with reference to the result of the momentum equation 
(10) as 

(15) 

The diffusion terms included in equation (15) are first calculated with the following equation at 
the gird point where temperature is defined: 

T'" + $FT"At - f F T " - ' A t .  T"+1 = 



THERMAL STRATIFICATION IN A CURVED DUCT 653 

Here the first and second derivatives of temperature with an asterisk are evaluated by GCSI 
using all values in the computational domain. Then the derived F T a t  steps n and n - 1 are 
interpolated at P‘ and P” respectively by LCSI in order to obtain the second and third terms 
on the right-hand side of equation (15). The remaining convection term in equation (15) is 
evaluated with LCSI in a manner similar to the calculation of the convection term in equation 
(10). 

Boundary conditions 

Since the intervals of the grid points are varied near the boundary and they are placed just 
on the boundary surface, the Dirichlet conditions are readily incorporated by setting the 
appointed values at the grids existing on the boundary surfaces. In contrast, it has been noted 
that the Neumann conditions, such as thermally insulated conditions, are rather difficult for 
non-orthogonal curvilinear co-ordinates to deal with. To improve this aspect, the intersection 
of the normal line on the physical boundary surface and the curvature in the vicinity of the 
boundary is specified and then its physical value, which is needed to satisfy the Neumann 
conditions, is interpolated with GCSI. 

Figures 3 and 4 illustrate how to implement the Neumann conditions on the t1-t2 boundary 
where t3 = 0, for example. Once the tangential vectors TI  and T, along and t2 respectively 
are obtained at P ,  on the boundary, the normal vector n on the surface is determined by 

n = T I  x T,. (17) 

The normal vector n is transformed to h in the computational domain as 

4-1 

Figure 3. Normal and tangential vectors on physical boundary surface 

4 3  

61 
Figure 4. Normal vector on transformed boundary surface 
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When the intersection of the normal line and the curvature where (, = mAt3 is given by P, in 
the physical space as indicated in Figure 3, the corresponding intersection in the transformed 
space may be specified as the point where the extension line of h crosses the t3  = mA5, plane. 
Once the location of the intersection is singled out in the computational domain, the physical 
value at P, is easily evaluated with GCSI. In the present method, when physical values F1 and 
F, are interpolated with GCSI in the t3 = m , A t 3  and mZA(3 planes respectively, the physical 
value on the boundary surface, Fb, is given by 

where D, and D ,  are the distances between Pb and the intersections. From equation (19), when 
the gradient of F in the normal direction is provided as aF/an, the Neumann boundary condition 
is determined with second-order accuracy. 

3. RESULTS AND DISCUSSION 

Pure advection computed by LCSI 

scalar value C may be described in the Lagrangian method as 
With reference to the advection-diffusion equation given by (15), the pure advection of a 

(20) 

The accurate evaluation of the pure advection is necessary to obtain reliable computational 
results. Figure 5 shows the two-dimensional grid distribution in a circular area, where the 
predicted scalar profiles are compared among some different numerical methods. It is assumed 
that the constant velocity distributions (u = v = Uc)  are given in the whole area and that the 
step-shaped scalar distribution is provided at the upstream section as illustrated in Figure 5 .  
The purely advected scalar values are predicted with LCSI, third-order polynomial interpola- 
tion” (POL3D), third-order upwind differen~e’~ (UPW3D) and usual first-order upwind 
difference (UPWlD). The filtering remedy and methodology” (FRAM) is applied to LCSI and 

en+ 1 = c’n. 

t 

Figure 5 .  Calculation area and scalar boundary condition 
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Figure 7. Comparison of scalar profiles (-, theory; 0, LCSI; A, UPW3DF; 0, UPW3D) 

POL3D to prevent unphysical oscillation. The computational time step is fixed at OOlDJU,  
in all cases, where D,  is the diameter of the calculation area. Figure 6 shows the predicted scalar 
profiles across section A-A' indicated in Figure 5. It is obvious that LCSI offers the most reliable 
scalar distribution in the predicted results shown in Figure 6. 

Regarding the computational efficiency, LCSI needed about seven times longer computational 
time than UPW3D in this pure advection problem. However, when they are applied to the fluid 
calculation in the curved duct as described later, which includes pressure calculation and all the 
other numerical procedures, it has been confirmed that LCSI requires only 1.5 times longer 
computational time than UPW3D. Figure 7 shows the predicted scalar distribution using 
third-order upwind difference on the finer grid distribution (UPW3DF). This UPW3DF is 
expected to require almost the same computational time as LCSI on the relatively coarse grid 
arrangement when they are applied to the calculation of the flow in the curved duct. In Figure 
7, although UPW3DF offers slightly improved results compared with UPW3D owing to the finer 
mesh arrangement, the scalar distribution obtained by LCSI is still much better than that of 
UPW3DF. This means that LCSI is superior to third-order upwind difference even if the 
computational time and the required computer memory are taken into account. In addition, 
with regard to the effect of the Courant number on LCSI, no significant differences were found 
in the range from the average Courant number 0.07 to 0.4 in this pure advection problem. 

Steady isothermal flow in a curvedpipe 

Detailed velocity measurements for the steady entry flow in a pipe with a 90" bend, which 
has a Reynolds number of 700, were carried out by Bovendeerd er al." This flow is numerically 
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Figure 8. Computational grids for curved pipe 

simulated with the present method under the same hydraulics conditions as their experiment. 
The pipe has an internal radius of 4.0 mm and a radius of curvature of 24.0 mm, which is 
represented in the numerical simulation as a pipe with a half-circular cross-section owing to the 
symmetry of the flow observed in the experiment. Figure 8 shows the distribution of the 
computational grids generated by solving equation (2). The total grid number is 5, x rz  x r3  = 
35 x 21 x 63 = 46,305 and the number of grids where pressure is defined is 19 x 12 x 33 = 1524. 
The incoming velocity is given as a parabolic distribution on the inlet section, which is located 
one diameter (8.0 mm) upstream from the entrance of the bend, taking into account that a fully 
developed flow was observed at the entrance in the experiment. 

Figure 9 shows the calculated velocity vectors on the section of symmetry. The development 
of the predicted axial flow is compared with the experimental results in Figure 10. The angles 
of the sections shown in Figure 10 are defined with respect to the entrance section of the bend. 
The parabolic velocity distribution is almost maintained up to 8 = 11.7" and the visible shift of 
the point of maximum axial velocity towards the outer bend is observed at 8 = 23.4" for the 
first time. The maximum of axial velocity still shifts towards the outer bend on the further 
downstream sections. On the other hand, a low axial velocity region develops near the inner 

Figure 9. Calculated velocity vectors on section of symmetry 
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0" 4.6" 11.7' 23.4" 39.8" 58.5" 81.9" 
e 

Figure 10. Development of axial flow (-, experimental results obtained by Bovendeerd er al."; 0 ,  predicted results; 
0, outer bend; I, inner bend) 

bend. In Figure 10 it can be seen that the predicted axial velocity distributions are generally in 
good agreement with the experimental values. 

Figure 11 shows the development of the secondary flow. At the first section most of the 
predicted velocity vectors are directed towards the inner wall. At 0 = 46" a weak clockwise 
circulation arises in the section and near the symmetry plane the flow is directed from the inner 
to the outer bend. The vortex has intensified on the following sections (0 = 11.7" and 23.4") and 
the predicted secondary flow patterns are almost symmetric with respect to the vertical centreline. 
On the following sections (0 = 39.8" and 58.5") the predicted vortex centre has moved to the 
inner wall and the vortex intensity has gradually decreased. At the last section (0 = 81.9") the 
predicted vortex has developed a 'tail' as observed by Bovendeerd et al." In general the 

. . . . . . . . 

e 2 23.4" 

Figure 1 l(a). Development of secondary flow: experimental results obtained by Bovendeerd er af." 
(0, outer bend; I, inner bend) 
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e = 4.60 

e = 1 1 . 7 ~  

e = 23.40 

Figure 1 I(b). Development of secondary flow: predicted results (0, outer bend; I ,  inner bend) 

development of the predicted secondary flow patterns as described above is quite similar to the 
experimental results shown in Figure 1 l(a). 

Thermal stratification in a curved duct 

Thermal stratification phenomena are experimentally investigated in a curved duct with two 
90" curved parts as illustrated in Figure 12. Figure 12 also indicates sections A, B and C where 
the predicted vertical temperature distributions will be compared with experimental results. In 
the experiments a fluid of high temperature TH is first supplied to the duct at constant flow rate 
so that the steady condition is established. After creating the steady state, the incoming fluid 
temperature is lowered to T,, where the temperature difference TH - T, is 10 K. The average 

Figure 12. Geometry of curved duct (H = 50 mm; L = 80 mm; R ,  = 30 mm; R, = 80 mm, section B is located in middle 
of horizontal part) 
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Figure 13. Grid distribution for curved duct 

velocity in the duct, Uo, is maintained at about 10 mm s - '  throughout the steady and thermal 
transient conditions. The Reynolds and Richardson numbers are derived respectively as 

(21) 

(22) 

Re = U o H / v ,  = 500,  

Ri = &(TH - T,)H/u; = 9.8. 

Since the Richardson number is relatively high in this condition, the buoyancy force strongly 
affects the flow and the thermally stratified flow appears in the horizontal part of the duct. 

Figure 13 shows the distribution of the computational grids generated by solving equation 
(2). Taking account of the symmetry in the transverse direction, the calculation area is set up 
from x2 = 0 to 25 mm. The grid intervals are arranged to become finer in the vicinity of the 
solid walls with the aid of the control functions included in equation (2). The total grid number 
is t l  x t2 x t3 = 33 x 13 x 83 = 35,607 and the number of grids where pressure is defined is 
18 x 8 x 43 = 6192. 

Figure 14 shows the calculated flow pattern on the symmetrical vertical section in the steady 
state. Using this result as the initial condition at t = 0, the numerical analysis in the thermally 
transient condition proceeds; the fluid temperature at the inlet is lowered linearly by 10 K during 
30 s, which approximately simulates the experimental condition, and the subsequent features are 
predicted until t = 120 s. Figure 15 shows the development of thermal stratification on the 
vertical section at x2 = 25 mm. Since the contour maps for the experimental results indicated 
in Figure 15 were drawn from the measured values with 38 thermocouples, some isothermal 
lines lose their smoothness. In Figure 15 the normalized temperature is defined as T* = (T - Tc)/ 
(TH - 7'') and the interval of the isothermal lines is 0.1. The stratified thermal interface tends to 
decline towards the downstream direction in the horizontal area of the duct. As a result, 
higher-temperature fluid remains in the upper right corner of the curved area. As indicated in 

L 
25mds 

Figure 14. Calculated velocity vectors in steady state (t = 0) 
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(a) t ~ 2 5 s  

(c) t=m 

(d) t-70s 

(e) t-120s 

Figure 15. Comparison between experiments and calculated results (left, experimentally obtained isothermal lines; right, 
predicted velocity vectors and isothermal lines; thick lines, T* = 0.5; broken lines, T* = 0.1-04) 

the predicted result at t = 40 s, a weak counterclockwise vortex appears in the higher-tempera- 
ture region and the cold fluid on the downstream side gradually rises up following the circulation. 
At t = 120 s the horizontally stratified region develops above the declined main stream. These 
numerically predicted features agree well with the experimental results. Figure 16 indicates the 
results of flow visualization by injecting fluorescent sodium into the cold fluid. It can be seen 
that the predicted progress of the thermal stratification also agrees well with these visualized 
results. 

Figure 17 shows the flow patterns and isothermal lines on the vertical x2-x3 plane, sections 
A, B and C, as indicated in Figure 12. Figure 17(a) shows the results in the initial condition, in 
which different secondary flow patterns appear according to the sections. After t = 25 s, 
descending flows appear below the stratified thermal interface on sections B and C. 

Figure 18 shows the vertical temperature distributions at t = 120 s on sections A, B and C; 
z indicates the vertical distance from the bottom surface of the horizontal part of a curved duct. 
In Figure 18 the thermal interface becomes lower in the order A, B, C as observed in 
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(e )  k120s 
Figure 16. Visualized thermal stratification phenomena in experiments 

Figure 15. While the numerically predicted thermal interface on section A is located slightly 
higher than that of the experimental result, it can be seen in general that the temperature 
distributions are satisfactorily simulated with the present numerical method. 

4. CONCLUDING REMARKS 

A numerical simulation method based on three-dimensional body-fitted co-ordinates has been 
developed in order to predict the buoyancy-influenced flows surrounded by arbitrarily shaped 
boundaries. 
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Figure 17. Predicted secondary flow and isothermal lines (left, section A; middle. section B; right, section C) 
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Figure 18. Vertical temperature distribution ( t  = 120s; 0, experiment; -. calculation) 

The curvilinear co-ordinate system is generated with the aid of GCSI, in which all variables 
in the computational domain are referred to derive cubic spline functions, and the metric 
coefficients are evaluated with less truncation error than by the usual methods. The numerical 
analyses of the transformed governing equations are based on a Lagrangian method. The 
convection terms are solved with LCSI, which enables us to obtain more accurate results than 
third-order polynomial interpolation or third-order upwind difference within a reasonable 
computational time. The buoyancy and diffusion terms are discretized in the Lagrangian schemes 
so as to have second-order accuracy with respect to time and space. In addition, the first and 
second derivatives included in these terms are obtained by making use of GCSI rather than the 
central difference method. 
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With regard to the boundary conditions, the Neumann conditions, which have been rather 
difficult for non-orthogonal curvilinear co-ordinates to deal with, are also able to be implemented 
with second-order accuracy in the present numerical method. 

The developed prediction method was applied to a steady isothermal flow in a pipe with a 
90" bend and to a thermally stratified flow in a curved duct. In the predicted results for the pipe 
flow the development of the secondary flow pattern as well as the axial velocity distribution 
have been reasonably simulated. In addition, regarding the stratified flow in a curved duct, some 
experimentally observed features, such as the declined shape of the thermal interface, the progress 
of thermal stratification and vertical temperature distributions in the horizontal part of the duct, 
have been satisfactorily predicted. 
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APPENDIX: NOMENCLATURE 

external force in xi-direction 
gravitational force 
time 
temperature 
lower temperature in transient condition 
higher temperature in transient condition 
standard temperature 
velocity component in xi-direction 
contravariant velocity component 
mean axial entrance velocity" 

Greek letters 

a thermal diffusivity 
A thermal expansion coefficient 
At 
AP P - P s  
vs 
p fluid density 
ps 

time increment of the computation 

kinematic viscosity at T = T, 

fluid density at T = T, 
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